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Abstract— Silicon has many advantages as a microwave sub-
strate material including low cost and a mature technology. The
aim of this paper is to evaluate the potential of using high-
resistivity silicon as a low-cost low-loss microwave substrate
through an experimental comparative study. Coplanar waveg-
uides fabricated on Si, GaAs, and quartz substrates are tested and
their characteristics are compared. Microwave spiral inductors
and meander lines are also fabricated on various substrates, and
their performance is also analyzed. The results demonstrate that
the losses of a coplanar transmission line (CPW) realized on high-
resistivity (3 k to 7 k {2-cm) silicon substrates are comparable to
the losses of a CPW realized on a GaAs substrate covered with
insulators. Furthermore, measured unloaded (’s of microwave
inductive structures on high-resistivity silicon substrates are com-
parable to the measured unloaded ’s of the same structures
on GaAs and on quartz. This paper demonstrates that high-
resistivity Si can be used as a microwave substrate.

1. INTRODUCTION

IGH COST is one of the problems of bringing high
frequency personal communication equipment to the
consumer market. Materials that provide superior microwave
performance for the realization of active devices and pas-
sive elements are typically very expensive. Si offers many
advantages as a microwave material and as a system substrate
including:
* Silicon is a mature technology,
¢ It has an excellent planarity for all flip chip bumping and
bonding technologies,
e It is a good thermal conductor,
* Multi-interconnect metal layers are easily achieved,
¢ An ample set of devices can be fabricated, and
* Devices that can not be fabricated on wafer can be
realized on other materials and then flip chip attached.

The price of float zone silicon wafer has decreased con-
siderably. Presently, a four-inch polished silicon wafer with
bulk resistivity of 2 k Q-cm costs $15.00. Five- and six-inch
wafers are also available.

The MMIC concept started in 1964 [1] in an effort to reduce
the size and weight of microwave transmitters and receivers.
At that time, the microwave and the semiconductor technology
[2] were in their infancies. The available technologies were:
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maximum Si resistivity was about 1600 Q-cm, Si processing
was poor (by today’s standards), some aspects of semicon-
ductor physics were not as well understood as they are now,
microelectronics interconnects in a production environment
were in the form of wire bond, and electrical interconnects
were microstrip lines. Si substrates with resistivities greater
than 1600 Q-cm have been used in both theoretical [1],
[9] and experimental investigations [10]. In [1], [3]-[10],
the structure used for analysis was the microstrip line. In
most cases, the loss analysis was done by considering metal
and bulk semiconductor contributions. In none of the cases
were Schottky (metal-semiconductor) junctions nor metal-
insulator-semiconductor junctions considered. The microwave
loss analysis was performed by considering the flatband volt-
age and the depletion width to be zero. Currently, both
microwave and semiconductor technologies have matured.
Several fabrication techniques have been developed, including
submicron gate length transistor technologies, and flip-chip,
and bump interconnects [11]. The semiconductor physics
concepts are now well established [12]. Moreover, two- and
three-dimensional electromagnetic analysis tools are well de-
veloped and can be obtained from several sources. Circuits
in coplanar waveguide configurations are in products [13].
Uncompensated high-resistivity (HR) Si wafers are available
at low cost. This certainly suggests that the potential of Si as
a microwave substrate should be reassessed.

Previously, research has been performed on doped semi-
conductor substrates to realize slow-wave structures [14]-[16].
The aim was to control the substrate doping and carrier dis-
tributions to enhance the slow-wave phenomena. One should
distinguish between this previous research and the work pre-
sented here. In the past, doped substrates, which slow the wave
at the expense of increasing losses, were utilized. On the other
hand, the aim of this paper is to demonstrate the potential of
using HR silicon as a low-cost, low-loss microwave substrate.

In the next sections, experimental results will be presented
to assess the performance of HR Si substrates in the mi-
crowave band. Coplanar waveguides fabricated on HR Si,
semi-insulating (SI) GaAs, and quartz substrates are tested and
their characteristics will be compared. Moreover, microwave
inductive structures are also fabricated, and their performance
will be analyzed as well.

II. SEMICONDUCTOR THEORETICAL BACKGROUND

The behavior of the semiconductor surface needs to be
taken into account when realizing passive structures like
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transmission lines and inductors on semiconductor substrates,
in particular, the metal-semiconductor and the metal-insulator-
semiconductor interfaces.

When a metal is brought into contact with a semiconducting
material, the surface of the semiconductor is depleted of
carriers. The resistivity of the depleted region is very high.
The depth of the depletion region width “W” and is given by

W— 2erE0Wo )
qNy
where, ¢, is the dielectric constant of the semiconducting
material, &, is the permittivity of vacuum, ¢, is the built-
in potential which is a function of the metallization system
and of the semiconductor to which the metal system makes
coniact to, ¢ is the magnitude of electron’s charge, and N,
is the dopant concentration. The key parameter in (1) is the
dopant concentration, which for standard Si is approximately
5 x 10'% (cm™3) and for HR Si is approximately 10'3 (cm~3).
On the other hand, when a metal-insulator system is brought
into contact with a semiconducting material, the surface of the
semiconductor is filled with charges “(}.” These charges at the
surface can be: 1) accumulation charges (same as bulk type); 2)
depletion charges; or, 3) inversion (opposite to bulk type) with
depletion charges (small compared to inversion charges). The
resistivity at the surface of the semiconductor decreases due
to the presence of such charges. The semiconductor charges
due to inversion are given by
e /2
Qs(inversion) ~ —M 2
Lqu

where, k is Boltzmann’s constant, 7" is the temperature, ¢ is
the surface potential, and Lp; is the intrinsic Debye length.

The surface potential is given by

ercokTF (Us, Up)

bs =Vy = Vip = U, == 3)
.U,
U=
=%
Up = 2F @
F(Us, Up) =/eUr (¢=Us + U, — 1) + e~Ur (e — U, — 1)
S)

where, V; is the gate voltage, ¢ is the Fermi potential, and
Vrp is the flat band voltage which is given by

VrB =¢m5—gi _ w

1 [
o / (xﬁ) Qum(2)dz. 6)

In (4), ¢ms is the metal-semiconductor work function due to
the metal semiconductor energy band difference, Q¢ is the
fixed charge density due primarily to structural defects in the
insulator, @, is the mobile charge density due primarily to
ionic impurities in the insulator, ¢);; is the interface trapped
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charge density due to structural defects at the insulator semi-
conductor interface, and C,, is the insulator(s) ‘capacitance.
The key parameter is the insulator capacitance C,,, which
is inversely proportional to the insulator thickness. For an
MOS gate, the insulator thickness is about 150 A. For the
transmission lines and inductors in the MMIC technology
under study, the insulator thickness is about 20,000 A. Further
definition of parameters and explanation of the usage and
restrictions of (1)~(6) can be found in [17]}-[19].

III. Si, GaAs, QUARTZ SUBSTRATES
AND THE REALIZED STRUCTURES

The topology of the structures analyzed in this study can be
divided into two groups. The first group consists of coplanar
waveguides (CPW) on several substrates. A cross section of
this structure is shown in Fig. 1. The second group consists
of inductive structures, also on various substrates. Their cross
section is shown in Fig. 2. The CPW and the inductive struc-
ture are chosen for the study due to their strong field interaction
with the propagation medium. The cross section of the CPW
and the inductors can be divided into two groups: metal-
semiconductor and metal-insulator-semiconductor. Three main
substrate materials are used in this comparative study, Si,
GaAs, and quartz. The quartz substrate is used as a standard.
Thin insulating layers are introduced in some structures be-
tween the substrate and the metallization layers, as shown in
Fig. 2. These thin insulating layers are commonly used in
MMIC process for the realization of MIM capacitors and the
electric isolation between two metal layers. All the structures
were processed under the same conditions [13] with the
exception of SUB#6 which went first through a gate MOS
oxide step. The geometries of interest are: metal thickness
“t” (2.5 pm); substrate thickness “h” (quartz = 525 pm, Si
= 400 pm, GaAs = 625 pm); and insulator thickness “¢;” as
shown in Fig. 2. The structures are in a coplanar configuration.
The CPW’s line width “w” is 10 wm and line spacing “s” is
30 pm. Table I summarizes other properties of the structures
including ground separation. A 12.7 pm diameter gold wire
bond was used to connect the center of the single metal layer
spiral inductor to its output. The spiral inductors have an outer
diameter of 300 pm. The HR N type Si substrates have a
(111) crystal orientation. The resistivity of the substrates were
measured [20] before and after processing (not including the
wafers where MOS gate oxide was grown). The resistivity
remains constant in the range of 3000-7000 {2-cm before and
after processing which is in agreement with [21], and it is
maintained as a function of substrate thickness.
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Fig. 2. Cross section of the fabricated structures.

TABLE I
SUMMARY OF STRUCTURES

Part # Turns Qutput Realized Ground Line
Connection On Separation Length

Substrate # (pm) (um)

CPW 1,2,4 1000
CPW .- - 4,5,6 - 1400
Meander .-- e 1,2,3 30 -
Spiral 3 Wire Bond 1,2,3 25 ---
Spiral 4 Wire Bond 1,2,3 25 ---
Spiral 6 Underbridge 4,5,6 10 ---

IV. MEASUREMENTS

The measurements were taken on wafer using: 1) HP 8510C
Vector Network Analyzer; 2) CASCADE MICROTECH™
high frequency coplanar probes; 3) LRM calibration technique
[22] to the probe tips; 4) a 6.35 mm quartz plate placed
between the probe chuck and the sample to remove higher
order modes of propagation.

For the CPW structures, a sample in each quadrant of the
wafer was measured. The two port S parameter measurements
were averaged and then translated into propagation constants
using the Even and Odd mode method [23].

For the inductors, six samples were measured per structure
to take into account process variability across the wafer.
Measurement were taken as follows: two at center reticles
and one at each of the 3, 6, 9, and 12 o’clock reticles located
at the outer edge of the wafer. The two port S parameter
measurements were averaged and then translated into a «-
network. The unloaded input impedance of the w-network
was then computed by leaving the output open. The unloaded
() was determined by dividing the imaginary part (inductive
stored energy) by the real part (dissipated energy) of the
unloaded input impedance. The unloaded @ was calculated
only at the frequencies at which the imaginary part of the
input impedance was linear (3 GHz for most structures under
study).

A. Results and Discussions for CPW’s Structures

The measured losses of the CPW shown in Fig. 3 realized
on SUB#1 (quartz), SUB#2 (Si), and SUB#4 (GaAs with
insulators) are presented in Fig. 4. Quartz with an effective
dielectric constant (e.f7) of 2.2 had the lowest losses when
compared to Si with g.¢5 of 5.7 or to GaAs substrate covered
with insulators with e.;r of 4.3. The dielectric constant
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CPW (line length = 1000 pm).
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Fig. 4. CPW (line length = 1000 pm) measured losses versus frequency.
For: SUB#2 (Si), Zo = 38 Q, .5y = 5.7, ——o——; SUB#4 (GaAs cover
with insulators), Zo = 38 Q, e.r5 = 4.3, ; SUB#1 (quartz), Zo = 61
Q, Eeff =22, — — ——.

indicates the electric field concentration in the medium of
propagation. The higher the dielectric constant, the higher the
electric field concentration; therefore, the higher the current
density at the edges of the transmission line. The three
substrate losses on Fig. 4 are in agreement with this concept.
However, around 7 GHz the losses of the SUB#4 became
higher than those of SUB#2. This can be explained by loss
mechanism of semiconductors. For bulk semiconductors, the
loss is associated with the movement of majority carriers,
known as ohmic loss, and with the internal polarization of
the material when subjected to a time varying signal. Since
the conduction due to majority carriers is constant as a
function of frequency, the loss tangent due to ohmic loss varies
inversely with frequency. In a semiconductor, the ohmic loss
predominates [4] at low frequencies and the polarization loss
dominates at high frequencies (Fig. 4).

The loss characteristics of the CPW on SUB#2 and SUB#4
can be explained by combining the above mentioned loss
mechanisms with semiconductor theory. The depletion region
width (1) of the metal-semiconductor junction increases with
the substrate resistivity, thereby reducing the losses. Equation
(1) is plotted in Fig. 5 as a function of the built-in potential for
N and P types HR Si. According to Fig. 5, depletion widths
of 20 ym can be obtained at 0.6 volt for N type 2 k Q-
cm Si substrates. When a metal-insulator system is brought
into contact with a semiconductor surface an accumulation, a
depletion, or an inversion region is formed depending on the
surface potential. The semiconductor charge at the surface (2)
is plotted as a function of the surface potential (3) in Fig. 6 for
N and P types Si of low and HR, and GaAs. A MOS transistor
is considered “ON” when the surface potential is 2¢ ;. For the
semiconductors plotted in Fig. 6:

Semiconductor 20¢
GaAs-N (10 M 2-cm) —-0.038 V
Si-N (10 k ©2-cm) - 0.080 Vv
Si-N (2 k ©-cm) - 0131V
Si-P (0.33 Q2-cm) 0778 V
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Fig. 5. Depletion width versus built-in potential for high resistivity silicon:
N-type p = 2 k 2-cm — - —; N-type p = 10 k Q-cm - — - —; P-type p
=2kQ-cm-—-—; P-type p=10k Q-cm - - - -,
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Fig. 6. Semiconductor charge density |Qs| versus surface potential. Semi-
conductor, type, resistivity. Si, P, p =0.33 2-cm ; S, N, p=2k Q2-cm
---5 8, N,p=10k Q-cm — - —; GaAs, N, p = 10 M Q-cm —— -.

The surface potential is a function of the flat band voltage
which in turn depends on many parameters (3) including the
metal-semiconductor work function difference, fixed charges,
mobile charges, interface charges, and the insulator thickness.
Even though the bulk resistivity of SUB#2 is between 3000
and 7000 ©-cm, the surface resistivity (several microns into
the substrate) is almost infinite. The majority of the field
penetration of the CPW under study is within the first several
microns.

Fig. 7 shows the measured losses for the CPW on SUB#5
which is realized on Si substrates with two microns of insu-
lator. Here, the effect of the drop in the surface resistivity
is clearly shown. The semiconductor-insulator interface is
inverted or accumulated. The CPW on SUB#5 has almost an
order of magnitude higher losses than the CPW on SUB#4
(GaAs substrate covered with insulators). One should no-
tice that the surface states density in SI GaAs is orders
of magnitude higher than Si. The surface states trap the
inversion/accumulation charges from going to the conduc-
tion/valence band; therefore, the effective surface resistivity
of Si is much lower than that of GaAs. The CPW on SUB#6
differs from the CPW on SUB#5 in that the silicon wafer was
first processed through an MOS gate oxide growth (about 150
A). The gate oxide growth reduces the mobile charges (Q,,)
and the interface charges (Q;¢). The charge reduction translates
into a reduction of the flatband voltage according to (6) which
further translates into the reduction of semiconductor charges
at the surface (2 and 3). Even though two of the sources of
flat band voltage are reduced, there is only a slight reduction
in losses. This is due to the relationship between the charges
and the metal-semiconductor capacitance which is reduced by
adding the MOS gate oxide thickness which increases the
effect of all the charges. Fig. 7 also indicates that the losses
due to the semiconductor charges increased as the square root
of frequency.
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Fig. 7. CPW (line length = 1400 p#m) measured losses versus frequency. For:

SUB#4 (GaAs cover with msulators) ; SUB#S (Si cover with insulators)
—— -3 SUB#6 (Si cover with insulators including MOS gate oxide) —§—.

B. Results and Discussions of the Microwave
Inductive Structures

The measured results of CPW structures on HR Si substrate
motivated further investigation in inductive structures. The
cross sections are shown in Fig. 2. As expected, the inductors,
shown in Figs. 8 and 9, fabricated on HR Si exhibited
characteristics very similar to those on GaAs, and quartz
substrates. The measured real and imaginary parts, shown in
Figs. 10 and 11, respectively, of the unloaded input impedance
of the meander inductor on SUB#1, SUB#2, and SUB#3 are
comparable. At low frequencies, both the real and imaginary
parts of the unloaded input impedance are indistinguishable
from each other. Around 5 GHz the curves start to separate.
The separation is due to the resonant characteristics of the
structure. The differences in the curves in Figs. 10 and 11 at
high frequency are attributed to the difference in the dielectric
constant of the substrates. The inductors on GaAs resonate
before those on Si and quartz due to the higher dielectric
constant of the GaAs. There are no noticeable differences
due to losses. Figs. 12-14 show the measured unloaded @)
for the meander, the three turn spiral, and the four turn spiral
inductors, respectively. As mentioned before, the @) is only
calculated at the frequencies at which the structure can be
used as an inductor and that is reason why the curves extend
only to 3 GHz. The maximum value of @, twice of the
maximum shown, in the inductive structure under study is
achieved in the frequency region of resonance. However, these
are not reported because the inductive structures are not used
at these frequencies due to the strong frequency dependence.
The inductive structures on Si present unloaded @) factors that
are very close to those of the other structures. This interesting
result can be explained as follows: 1) The metal-semiconductor
interface depletes the surface of the Si substrates of carriers;
2) the higher the resistivity, the wider [see Fig. 5, and (1)] the
depletion region; and 3) the bulk of the electromagnetic field
of the inductors is near the surface of the substrate.

The effect of a thin insulator layer between the metal and
the substrate were also investigated in the inductive structures.
Fig. 15 shows the real part of the input shunt admittance
of the w-network of the six-turn spiral inductor realized on
SUB#4, SUB#5, and SUB#6. The cross sectional views of
these structures are shown in Fig. 2. Fig. 15 shows a similar
pattern to that of Fig. 7. Here, as in the case of the CPW,
a sharp difference between the GaAs and Si substrates is
observed. When the insulator is introduced, a strong inversion
or accumulation layer of charges is formed at the surface (see
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Fig. 8. Three-turn spiral inductor.

Fig. 9. Meander inductor.
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Fig. 10. Measured real part of unlocated input impedance (meander). SUB#1
(quartz) — — —; SUB#2 (Si) ; SUB#3 (GaAs) —=—.
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(Ohms)
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Frequency (GHz)

Fig. 11.
SUB#1 (quartz) — — —; SUB#2 (Si)

Measured imaginary part of unloaded input impedance (meander).
; SUB#3 (GaAs) —m—.

Fig. 6) of the Si substrates. The MOS gate oxide process
reduces the interface and mobile charges and decreases the
metal-insulator-semiconductor capacitance. The end effect is
a slight reduction in the accumulation/inversion charges at
the surface; therefore, the input shunt losses are reduced.
The losses due to the substrate inversion/accumulation charges
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Fig. 12. Measured unloaded ¢} (meander). SUB#1 (quartz) — ~ —; SUB#2
(Si) ; SUB#3 (GaAs) —B—.
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Fig. 13. Measured unloaded @ (three-turn spiral). SUB#1 (quartz) — — —;
SUB#2 (Si) ; SUB#3 (GaAs) —m—.
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Fig. 14. Measured unloaded ¢} (four-turn spiral). SUB#1 (quartz) — — —;
SUB#2 (Si) ; SUB#3 (GaAs) —#—.
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Fig. 15. Measured real part of = network input shunt admittance (six turn
spiral). SUB#4 (GaAs cover with insulators) — — —; SUB#5 (Si cover with
insulators) ; SUB#6 (Si cover with insulators and MOS gate oxide)
—.—

increase as the square root of frequency. The substrate losses
start to impact the device around 1 GHz. At 2 GHz, the
unloaded @, shown in Fig. 16, of the six spiral inductors
on SUB#5 and SUB#6 (HR Si with insulators) is half that
of SUB#4 (GaAs substrate covered with insulator). Figs. 15
and 16 explain why standard (i.e., below 30 2-cm) Si has been
used to fabricate MMIC designs up to 2 GHz frequency region.

The lower () of the six-turn spiral inductor compared to the
three- and four-turn ones is attributed to 1) the ground plane is
closer to the conductor, which leads to higher current density
at the edges, 2) the losses of the under bridge metallization
are higher than that of the wire bond, and 3) presence of
inversion/accumulation charges.
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Metal-§i0, /Si 3N4 -GaAs
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Fig. 16. Measured unloaded () (six turn spiral). SUB#4 (GaAs cover with
insulators) — — —; SUB#5 (Si cover with insulators) ; SUB#6 (Si
cover with insulators and MOS gate oxide) ——.

V. CONCLUSION

The loss mechanisms of semiconductor substrates used for
microwave applications were analyzed using both microwave
and semiconductor physics concepts and were investigated
experimentally. Si with measured resistivity between 3 k and 7

k Q-cm produces transmission line losses on CPW comparable .

to that of GaAs substrate covered with insulators. Furthermore,
the measured unloaded Q’s of inductive structures on HR Si
are comparable to the @Q’s of similar structures on GaAs and
quartz substrates. These results demonstrate that HR Si can be
used as a microwave substrate, which translates to lower-cost
microwave products.
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